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]
1 Basic concepts of linear codes

In 1948 Claude Shannon published a landmark paper “A mathematical theory of commu-
nication” [306] that signified the beginning of both information theory and coding theory.
Given a communication channel which may corrupt information sent over it, Shannon
identified a number called the capacity of the channel and proved that arbitrarily reliable
communication is possible at any rate below the channel capacity. For example, when trans-
mitting images of planets from deep space, it is impractical to retransmit the images. Hence
if portions of the data giving the images are altered, due to noise arising in the transmission,
the data may prove useless. Shannon’s results guarantee that the data can be encoded befc
transmission so that the altered data can be decoded &p#uified degree of accuracy.
Examples of other communication channels include magnetic storage devices, compact
discs, and any kind of electronic communication device such as cellular telephones.

The common feature of communication channels is that information is emanating from a
source and is sent over the channel to a receiver at the other end. For instance in deep spac
communication, the message source is the satellite, the channel is outer space together wit|
the hardware that sends and receives the data, and the receiver is the ground station on Eartl
(Of course, messages travel from Earth to the satellite as well.) For the compact disc, the
message is the voice, music, or data to be placed on the disc, the channel is the disc itself
and the receiver is the listener. The channel is “noisy” in the sense that what is received
is not always the same as what was sent. Thus if binary data is being transmitted over the
channel, when a 0 is sent, it is hopefully received as a 0 but sometimes will be received as a
1 (or as unrecognizable). Noise in deep space communications can be caused, for example
by thermal disturbance. Noise in a compact disc can be caused by fingerprints or scratches
on the disc. The fundamental problem in coding theory is to determine what message was
sent on the basis of what is received.

A communication channel is illustrated in Figure 1.1. At the source, a message, denoted
x in the figure, is to be sent. If no modification is made to the message and it is transmitted
directly over the channel, any noise would distort the message so that it is not recoverable.
The basic idea is to embellish the message by adding some redundancy to it so that hopefully
the received message is the original message that was sent. The redundancy is added by tt
encoder and the embellished message, called a codennrthe figure, is sent over the
channel where noise in the form of an error veaatistorts the codeword producing a
received vectoy.! The received vector ithen sent to be decoded where the errors are

1 Generally our codeword symbols will come from a fiflgl with g elements, and our messages and codewords
will be vectors in vector spacd?é andF}, respectively; ifc entered the channel aycexited the channel, the
differencey — cis what we have termeg the erm Figure 1.1.
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Figure 1.1 Communication channel.

removed, the redundancy is then stripped off, and an estimafethe original message

is produced. Hopefullx = x. (There is a one-to-one correspondence between codewords
and messages. Thus we will often take the point of view that the job of the decoder is to
obtain an estimat§ of y and hope tha§ = c¢.) Shannon’s Theorem guarantees that our
hopes will be fulfilled a certain percentage of the time. With the right encoding based on the
characteristics of the channel, this percentage can be made as high as we desire, although
not 100%.

The proof of Shannon’s Theorem is probabilistic and nonconstructive. In other words, no
specific codes were produced in the proof that give the desired agdaracgiven channel.
Shannon’s Theorem only guarantees their existence. The goal of researchin coding theory is
to produce codes that fulfill the conditions of Shannon’s Theorem. In the pages that follow,
we will present many codes that have been developed since the publication of Shannon’s
work. We will describe the properties of these codes and on occasion connect these codes to
other branches of mathematics. Once the code is chosen for application, encoding is usually
rather straightforward. On the other hand, decoding efficiently can be a much more difficult
task; at various points in this book we will examine techniques for decoding the codes we
construct.

1.1

Three fields

Among all types of codes, linear codes are studied the most. Because of their algebraic
structure, they are easier to describe, encode, and decode than nonlinear codes. The code
alphabet for linear codes is a finite field, although sometimes other algebraic structures
(such as the integers modulo 4) can be used to define codes that are also called “linear.”
In this chapter we will study linear codes whose alphabet is a Hgldalso denoted
GF(), with g elements. In Chapter 3, we will give the structure and properties of finite
fields. Although we will present our general results over arbitrary fields, we will often
specialize to fields with two, three, or four elements.
A field is an algebraic structure consisting of a set together with two operations, usu-
ally called addition (denoted by) and multiplication (denoted bybut often omitted),
which satisfy certain axioms. Three of the fields that are very common in the study
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of linear codes are thbinary field with two elements, théernary field with three el-
ements, and thguaternaryfield with four elements. One can work with these fields
by knowing their addition and multiplication tables, which we present in the next three
examples.

Example 1.1.1 The binary fieldF, with two elementg0, 1} has the following addition and
multiplication tables:

+]10 1 01
0|0 1 0(0 O
111 0 1/0 1
This is also the ring of integers modulo 2. ]

Example 1.1.2 The ternary fieldF; with three element§0, 1, 2} has addition and multi-
plication tables given by addition and multiplication modulo 3:

Example 1.1.3The quaternary field, with four elementq0, 1, w, w} is more compli-
cated. It has the following addition and multiplication tablBgjs not the ring of integers
modulo 4:

+]0 1 0 @ 01 w @

0|0 1 0w @ 0|0 0 0 O

111 0 v w 110 1 v @

w|lw » 0 1 w0 o o 1

w|lw o 1 0 |0 »w 1 w

Some fundamental equations are observed in these tables. For instance, one notices the
X+x=0forallx € Fs. Also® = 0? = 1+ w andw® = @° = 1. [ ]

Linear codes, generator and parity check matrices

Let ]Fg denote the vector space of altuples over the finite fieldy. An (n, M) codeC

overlFy is a subset ng of sizeM. We usually write the vectorg{, ay, ..., a,) in ]Fg inthe

form aa; - - - &, and call the vectors i@ codewordsCodewords are sometimes specified

in other ways. The classic example is the polynomial representation used for codewords in
cyclic codes; this will be described in Chapter 4. The figjdof Example 1.1.1 has had

a very special place in the history of coding theory, and codesByvare calledbinary

codes Similarly codes ovel; are termedernary codeswhile codes ovef, are called
quaternary codesThe term “quaternary” has also been used to refer to codes over the ring
Z4 of integers modulo 4; see Chapter 12.
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Withoutimposing further structure on a code its usefulness is somewhat limited. The most
useful additional structure to impose is that of linearity. To that er@jsfak-dimensional
subspace o]Fg, thenC will be called an f, k] linear codeover Fy. The linear code’
hasg* codewords. The two most common ways to present a linear code are with either a
generator matrix or a parity check matrix.generator matrixfor an [n, k] codeC is any
k x n matrixG whose rows form a basis f6r In general there are many generator matrices
for a code. For any set &findependent columns of a generator maBixhe corresponding
set of coordinates forms anformation sefor C. The remaining = n — k coordinates are
termed aedundancy sedndr is called thaedundancyof C. If the firstk coordinates form
an information set, the code has a unique generator matrix of the fQrny] wherely is
thek x kidentity matrix. Such a generator matrix isstandard formBecause a linear code
is a subspace of a vector space, it is the kernel of some linear transformation. In particular,
there is anif — k) x n matrix H, called gparity check matrixor the [n, k] codeC, defined

by
C={xeFy|Hx" =0} (1.1)

Note that the rows off will also be independent. In general, there are also several possible
parity check matrices fof. The next theorem gives one of them wh&has a generator
matrix in standard form. In this theoreAl is the transpose oA.

Theorem 1.2.11f G = [I¢ | A] is a generator matrix for thfn, k] codeC in standard form
then H=[—-AT | I,,_] is a parity check matrix fo€.

Proof: We clearly haveHG™ = — AT + AT = O. Thus( is contained in the kernel of the
linear transformatiox — HxT. As H has rankn — k, this linear transformation has kernel
of dimensiork, which is also the dimension 6f The result follows. a

Exercise 1 Prior to the statement of Theorem 1.2.1, it was noted that the rows of the
(n — K) x n parity check matrixH satisfying (1.1) are independent. Why is that so? Hint:
The mapx — Hx' is a linear transformation frorﬁg to IFg’k with kernelC. From linear
algebra, what is the rank & ? ¢

Example 1.2.2 The simplestway to encode information in order to recover itin the presence
of noise is to repeat each message symbol a fixed number of times. Suppose that our
information is binary with symbols from the fielth, and we repeat each symtyaiimes. If

for instancen = 7, then whenever we want to gka 0 wesend 0000000, and whenever we
wantto send a 1 we send 1111111. If at most three errors are made in transmission and if
we decode by “majority vote,” then we can correctly determine the information symbol, 0
or 1. In general, our codgis the |n, 1] binary linear code consisting of the two codewords
0=00---0andl =11---1andis called thbinary repetition codef lengthn. This code

can correct up te = [(n — 1)/2] errors: if at mose errors are made in a received vector,
then the majority of coordinates will be correct, and hence the original sent codeword can
be recovered. If more thamerrors are made, these errors cannot be corrected. However,
this code can detect— 1 errors, as received vectors with between 1 ardl errors will
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1.3 Dual codes

definitely not be codewords. A generator matrix for the repetition code is
G=[1]1 --- 1],

which is of course in standard form. The corresponding parity check matrix from
Theorem 1.2.1is

1

The first coordinate is an information set and the fast1 coordinates form a redundancy
set. |

Exercise 2 How many information sets are there for the, ] repetition code of
Example 1.2.2? ¢

Example 1.2.3The matrixG = [l4 | A], where

1 0 0 0/0 1 1T
G:0100101
0 010110
0 00 1|1 1 1

is a generator matrix in standard form for g 4] binary code that we denote 13y3. By
Theorem 1.2.1 a parity check matrix fofs is

011 1|1 00
H=[AT|Il5)=|1 0 1 1|0 1 Of.
110 1(0 0 1

This code is called the [4] Hamming code |

Exercise 3 Find at least four information sets in the f] code’H3 from Example 1.2.3.
Find at least one set of four coordinates that do not form an information set. ¢

Often in this text we will refer to gubcodeof a codeC. If C is not linear (or not known
to be linear), a subcode 6fis any subset of. If C is linear, a subcode will be a subset of
C which must also be linear; in this case a subcodé isfa subspace df.

Dual codes

The generator matri$ of an [n, k] codeC is simply a matrix whose rows are independent
and span the code. The rows of the parity check madrixre independent; hen¢¢ is the
generator matrix of some code, called thel or orthogonalof C and denoted. Notice
thatC* is an |n, n — k] code. An alternate way to define the dual code is by using inner
products.
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Recall that the ordinary inner product of vect@rs: X; -+ - Xp, Y = Y1+ - ¥ in Fg is

n
Xy =Y XV

i=1
Therefore from (1.1), we see th@t can also be defined by
Ct={xeFqy|x-c=0forallcecC}. (1.2)

It is a simple exercise to show that® andH are generator and parity check matrices, re-
spectively, folC, thenH andG are generator and parity check matrices, respectivelg; for

Exercise 4 Prove that ifG andH are generator and parity check matrices, respectively,
for C, thenH andG are generator and parity check matrices, respectively]for ¢

Example 1.3.1Generator and parity check matrices for time 1] repetition codeC are

given in Examplel.2.2. The dual codé* is the j, n — 1] code with generator matrix

H and thus consists of all binanttuplesa;a, - - - a,_1b, whereb=a; +a, + - - - + a1
(additioninF,). Thenth coordinatdn is an overall parity check for the first— 1 coordinates
chosen, therefore, so that the sum of all the coordinates equals 0. This makes it easy to see
that G is indeeda parity check matrix fo€*. The codeC* has the property that a single
transmission error can be detected (since the sum of the coordinates will not be 0) but not
corrected (since changing any one of the received coordinates will give a vector whose sum
of coordinates will be 0). |

A codeC is self-orthogonaprovidedC C C* andself-dualprovidedC = C*. The length
n of a self-dual code is even and the dimension/i2.

Exercise 5 Prove that a self-dual code has even leng#ind dimensiom/2. ¢

Example 1.3.20ne generator matrix for the [4] Hamming codeH3 is presented in
Example 1.2.3. Leﬂg be the code of length 8 and dimension 4 obtained ffdmby
adding an overall parity check coordinate to each vectd aind thus to each codeword
of Hz. Then

1 00 0/{0 1 1T
G- 01 001011
/0 01 0/1 101
0 00 112 110
is a generator matrix foHs. Itis easy to verify thats is a self-dual code. |

Example 1.3.3The[4 2]ternary codé&s », often called théetracodehas generator matrix
G, in standard form, given by

1 0|1 1
oo ]

0 1
This code is also self-dual. [ |
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Exercise 6 Prove thaf{z from Example 1.3.2 ané(3 , from Example 1.3.3 are self-dual
codes. ¢

Exercise 7 Find all the information sets of the tetracode given in Example 1.3.3. ¢
When studying quaternary codes over the fiBJdExample 1.1.3), it is often useful to
consider another inner product, called tihermitian inner productgiven by
n
(X Y) =X-Y= > XV,
i=1

where™, calledconjugation is given by0 = 0,1 = 1, andw = w. Using this inner product,
we can define thelermitian dualof a quaternargodeC to be, analogout (1.2),

C={xeF | (x,c)=0forallceC}.
Define theconjugateof C to be
={ClceC},

wheret = 66 - - - G;whenc = ¢, - - - ¢, Notice thatC*# = C. We also have Hermitian
self-orthogonality and Hermitian self-duality: nametyjs Hermitian self-orthogonaif
C € C** andHermitian self-dualf ¢ = C**.

Exercise 8 Prove that ifC is a code oveF,, thenC‘* = . ¢

Example 1.3.4The [6 3] quaternary cod€s has generator matrie in standard form

given by
1 0 0|1 w w
Gg=|0 1 O|lw 1 w].
0 0 1llw w 1
This code is often called tHeexacodelt is Hermitian self-dual. [ |

Exercise 9 Verify the following properties of the Hermitian inner productBh
(@) (x,x) € {0, 1} for all x € Fy.
(b) X,y +2) = (X,y)+ (x,2) forall x,y, z € Fj.

(c) x—|—y, _(,z)—i-(y,z)forallx,y,zeIFﬂ.

(d) (x, ,x) forallx,y € F}.

(e) (cx (x y) forall x,y € Fj.

(f) (X, ay) =a(x,y) forallx,y e Fj. ¢

Exercise 10 Prove that the hexacodg from Example 1.3.4 is Hermitian self-dual. ¢

1.4 Weights and distances

An important invariant of a code is the minimum distance between codewords. The
(Hamming distanced(x, y) between two vectorg,y € ]Fg is defined to be the number



Basic concepts of linear codes

of coordinates in whiclx andy differ. The proofs of the following properties of distance
are left as an exercise.

Theorem 1.4.1 The distance functiod(x, y) satisfies the following four properties
(i) (non-negativityd(x, y) > Oforall x,y € ]Fg.

(i) d(x,y)=0ifandonlyifx =y.

(iii) (symmetryd(x, y) = d(y, x) forall x,y € Fg

(iv) (triangle inequality d(x, z) < d(x, y) +d(y, z) forall x,y,z € Fg

This theorem makes the distance function a metric on the vector Eﬁaee
Exercise 11 Prove Theorem 1.4.1. ¢

The (minimun) distanceof a codeC is the smallest distance between distinct codewords
andisimportantin determining the error-correctagability ofC; as we see later, the higher
the minimum distance, the more errors the code can correct.Hamarfing weightwt(x)
of a vectorx € IFg is the number of nonzero coordinatesxinThe proof of the following
relationship between distance and weight is also left as an exercise.

Theorem 1.4.21f x, y € Fy, thend(x, y) = wt(x — y). If C is a linear codethe minimum
distance d is the same as the minimum weight of the nonzero codew@rds of

As aresult of this theorem, for linear codes, the minimum distance is also call@dhtimeum
weightof the code. If the minimum weiglt of an [n, k] code is known, then we refer to
the code as am[ k, d] code.

Exercise 12 Prove Theorem 1.4.2. ¢

When dealing with codes ovéf,, 3, or F4, there are some elementary results about
codeword weights that prove to be useful. We collect them here and leave the proof to the
reader.

Theorem 1.4.3 The followinghold:
(i) Ifx,ye[F3, then

wi(X 4+ y) = wi(x) + wt(y) — 2wt(x Ny),

wherex Ny is the vector inFy, which hasls precisely in those positions where both
x andy havels.

(i) Ifx,yeF5, thenwt(x Ny) =x-y (mod 2)

(iii) If x € F3, thenwt(x) = x - x (mod 2)

(iv) If x € Fg, thenwt(x) = x - x (mod 3)

(v) If x € Fg, thenwt(x) = (x,x) (mod 2)

Exercise 13 Prove Theorem 1.4.3. ¢

Let A, also denoted (C), be the number of codewords of weigtit C. The list A; for
0 <i < nis called thewveight distributioror weight spectrurof C. A great deal of research
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is devoted to the computation of the weight distribution of specific codes or families of
codes.

Example 1.4.4LetC be the binary code with generator matrix

11000
G=(0 0 1 1 0 Of.
0 0 0011

The weightdistributionaf is Ag = As = 1andA; = A4 = 3. Notice thatonly the nonzero
A are usually listed. [ |

Exercise 14 Find the weight distribution of the ternary code with generator matrix
11000

G=|0 0 1 1 0 0.
0 00011

Compare your result to Example 1.4.4. ¢

Certain elementary facts about the weight distribution are gathered in the following
theorem. Deeper results on the weight distribution of codes will be presented in Chapter 7.

Theorem 1.4.5LetC be an[n, k, d] code ovetfy. Then
() AoC) + AC) + -+ + An(C) = g~.

(i) Ao(C)=1and A(C) = AxC) =--- = Ag-1(C) = 0.
(iii) If C is a binary code containing the codewdtd= 11- - - 1,then A(C) = An_i(C) for
O<i=<n.

(iv) If C is a binary self-orthogonal cod¢hen each codeword has even wejgind C*
contains the codeworti = 11. - - 1.
(v) If Cis aternary self-orthogonal codéhen the weight of each codeword is divisible by

three.

(vi) If Cisaquaternary Hermitian self-orthogonal cadben the weight of each codeword
is even.

Exercise 15 Prove Theorem 1.4.5. ¢

Theorem 1.4.5(iv) states that all codewords in a binary self-orthogonalkbdee even
weight. If we look at the subset of codewordstothat have weights divisible by four, we
surprisingly get a subcode 6f that is, the subset of codeworoweights divisible by four
form a subspace . This is not necessarily the case for non-self-orthogonal codes.

Theorem 1.4.6 LetC be an[n, k] self-orthogonal binary code. L&y be the set of code-

words inC whose weights are divisible by four. Then either

(i) C=Co,o0r

(i) Coisan[n, k — 1]subcode of andC = Co U C1, whereC1 = X + Cq for any codeword
x whose weight is even but not divisible by four. Furtherm@yeconsists of all
codewords of whose weights are not divisible by four.
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Proof: By Theorem 1.4.5(iv) all codewords have even weight. Therefore either (i) holds
or there exists a codewordof even weight but not of weight a multiple of four. Assume
the latter. Lety be another codeword whose weight is even but not a multiple of four.
Then by Theorem 1.4.3(i), Wt y) = wt(X) + wi(y) — 2wt(x Ny) = 2+ 2 — 2wt(x Ny)

(mod 4). But by Theorem 1.4.3(ii), m(O y) = x -y (mod 2). Hence wi + y) is divisible

by four. Thereforex +y € Cop. This shows thay € X + Co andC = Co U (X + Cg). ThatCq

is a subcode of and thatC; = x + Cq consists of all codewords @f whose weights are

not divisible by four follow from a similar argument. O

Thereis an analogous resultto Theorem 1.4.6 where you consider the subset of codewords
of a binary code whose weights are even. In this case the self-orthogonality requirement is
unnecessary; we leave its proof to the exercises.

Theorem 1.4.7 LetC be an[n, k] binary code. Let. be the set of codewords (hwhose

weights are even. Then either

(i) C=Ceo0r

(i) Ceisan[n, k — 1] subcode of andC = C. U Co, WhereC, = X + C, for any codeword
x whose weight is odd. Furthermogg consists of all codewords ¢fwhose weights
are odd.

Exercise 16 Prove Theorem 1.4.7. ¢

Exercise 17 LetC be the [6 3] binary code with generator matrix

11000
G=(0 1 1 0 0 OQf.
111111

(a) Prove that is not self-orthogonal.

(b) Find the weight distribution of.

(c) Show that the codewords whose weights are divisible by four do not form a subcode
of C. ¢

The next result gives a way to tell when Theorem 1.4.6(i) is satisfied.

Theorem 1.4.8LetC be a binary linear code.

(i) If C is self-orthogonal and has a generator matrix each of whose rows has weight
divisible by fourthen every codeword @fhas weight divisible by four.

(i) If every codeword of has weight divisible by fouthenC is self-orthogonal.

Proof: For (i), letx andy be rows of the generator matrix. By Theorem 1.4.3(i)xwt(y) =
wit(x) + wt(y) — 2wt(x Ny) = 0+ 0 — 2wt(x Ny) = 0 (mod 4). Now proceed by induc-
tion as every codeword is a sum of rows of the generator matrix. For (ity, et C. By
Theorem 1.4.3(i) and (ii), (- y) = 2wt(x Ny) = 2wt(x N'y) — wt(x) — wt(y) = —wt(x +
y) =0 (mod 4). Thu-y =0 (mod 2). O

It is natural to ask if Theorem 1.4.8(ii) can be generalized to codes whose codewords
have weights that are divisible by numbers other than four. We say that aCc@uler
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any field) isdivisible provided all codewords have weights divisible by an inteyer 1.

The code is said to bdivisible by A; A is calleda divisor of C, and the largest such
divisor is calledthe divisorof C. Thus Theorem 1.4.8(ii) says that binary codes divisible
by A = 4 are self-orthogonal. This is not true when considering binary codes divisible
by A =2, as the next example illustrates. Binary codes divisibleAby 2 are called
even

Example 1.4.9 The dual of the ff, 1] binary repetition cod€ of Example 1.2.2 consists
of all the even weight vectors of length (See also Example 1.3.1.)df> 2, this code is
not self-orthogonal. [ |

When considering codes ov&g and Fy, the divisible codes with divisors three and
two, respectively, are self-orthogoraa the next theorem shows. This theorem includes the
converse of Theorem 1.4.5(v) and (vi). Part (i) is found in [217].

Theorem 1.4.10LetC be a code ovelfy, with g = 3 or 4.

(i) When g= 3, every codeword of has weight divisible by three if and onlydfis
self-orthogonal.

(i) When g= 4, every codeword of has weight divisible by two if and only & is
Hermitian self-orthogonal.

Proof: In (i), if C is self-orthogonal, the codewords have weights divisible by three by
Theorem 1.4.5(v). For the converse ety € C. We need to show that¢- y = 0. We can
view the codewordg andy having the following parameters:

X: » 0 = #£ 0

y: 0 » = # 0
a b c d e

where there ara coordinates wherg is nonzero and is zero,b coordinates wherg is
nonzero and is zero,c coordinates where both agree and are nonzecoprdinates when
both disagree and are nonzero, awbordinates where both are zero. Sow(y) = a +
b+candwtk—y)=a+b+d.Butx+yeCand hencea+b+c=a+b+d=0
(mod 3). In particulac = d (mod 3). Therefor&-y = c+2d =0 (mod 3), proving (i).
In (i), if C is Hermitian self-orthogonal, the codewords have even weights by Theo-
rem 1.4.5(vi). For the converse bet C. If x hasa 0s,b 1s,c ws, andd ws, therb+ c+d
is even as wi) = b + ¢ + d. However,(x, x) also equal® + ¢ + d (as an element df,).
Thereforgx, x) = Oforallx € C. Nowletx, y € C. Soboth + yandwx + yareinC. Using
Exercise 9 we have & (X+Vy,X+Y) = X)+ XY+, X))+, Y) =Xy +
(. X). Also 0= (X +Y, wX+Y) = (X, X) + 0(X, y) + B(Y. X) + (Y. ¥) = o(X, y) +
w(y, X). Combining theséx, y) must be 0, proving (ii). O

The converse of Theorem 1.4.5(iv) is in general not true. The best that can be said in this
case is contained in the following theorem, whose proof we leave as an exercise.

Theorem 1.4.11LetC be a binary code with a generator matrix each of whose rows has
even weight. Then every codeword’dias even weight.
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Exercise 18 Prove Theorem 1.4.11. ¢

Binary codes for which all codewords have weight divisible by four are caltdly-
ever? By Theorem 1.4.8, doubly-even codes are self-orthogonal. A self-orthogonal code
must be even by Theorem 1.4.5(iv); one which is not doubly-even is csiltetly-even

Exercise 19 Find the minimum weights and weight distributions of the co@ésin
Example 1.2.3H§, 773 in Example 1.3.2, the tetracode in Example 1.3.3, and the hexacode
in Example 1.3.4. Which of the binary codes listed are self-orthogonal? Which are doubly-
even? Which are singly-even? ¢

There is a generalization of the concepts of even and odd weight binary vectors to
vectors over arbitrary fields, which is useful in the study of many types of codes. A vector
X = X1Xp -+ Xpn N Iﬁ‘g is even-likeprovided that

Xn:Xi =0
i=1

and isodd-likeotherwise. A binary vector is even-like if and only if it has even weight; so
the concept of even-like vectors is indeed a generalization of even weight binary vectors.
The even-like vectors in a code form a subcode of a codelgyeis did the even weight
vectors in a binary code. Except in the binary case, even-like vectors need not have even
weight. The vectors (11, 1) in ]Fg and (1 w, o) in Fi are examples. We say that a code is
even-likeif it has only even-like codewords; code isodd-likeif it is not even-like.

Theorem 1.4.12LetC be an[n, k] code oveify. LetC. be the set of even-like codewords
in C. Then either

(i) C=Ceor

(i) Ceisan[n, k — 1] subcode of.

Exercise 20 Prove Theorem 1.4.12. ¢

There is an elementary relationship between the weight of a codeword and a parity check
matrix for a linear code. This is presented in the following theorem whose proof is left as
an exercise.

Theorem 1.4.13LetC be a linear code with parity check matrix H.dfe C, the columns

of H corresponding to the nonzero coordinatescadre linearly dependent. Conversgly

if a linear dependence relation with nonzero coefficients exists amooglumns of H
then there is a codeword ifi of weightw whose nonzero coordinates correspond to these
columns.

One way to find the minimum weiglat of a linear code is to examine all the nonzero
codewords. The following corollary shows how to use the parity check matrix talfind

2 Some authors reserve the term “doubly-even” for self-dual codes for which all codewords have weight divisible
by four.
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Corollary 1.4.14 Alinear code has minimum weight d if and only if its parity check matrix
has a set of d linearly dependent columns but no set-efldinearly dependent columns.

Exercise 21 Prove Theorem 1.4.13 and Corollary 1.4.14. ¢
The minimum weight is also characterized in the following theorem.

Theorem 1.4.15If Cisan[n, k, d] codethen every n- d + 1coordinate position contains
an information set. Furthermorel is the largest number with this property.

Proof: Let G be a generator matrix f@t, and consider any sé of s coordinate positions.

To make the argument easier, we assufnes the set of the last positions. (After we
develop the notion of equivalent codes, the reader will see that this argument is in fact
general.) SupposX does not contain an information set. L@t=[A | B], where A is

k x (n—s) andB is k x s. Then the columrrank of B, and hence the vo rank of B,

is less thark. Hence there exists a nontrivial linear combination of the rowB efhich
equald, and hence a codewocdvhich isQ in the lasts positions. Since the rows @& are
linearly independent; # 0 and hencel < n — s, equivalently,s < n — d. The theorem

now follows. O

Exercise 22 Find the number of information sets for the,# Hamming code H3
given in Example 1.2.3. Do the same for the extended Hamming &adeom Example
1.3.2. ¢

1.5

1.5.1

New codes from old

As we will see throughout this book, many interesting and important codes will arise by
modifying or combining existing codes. We will discuss five ways to do this.

Puncturing codes

Let C be an p, k, d] code overFy. We canpunctureC by deleting the same coordinéte

in each codeword. The resulting code is still linear, a fact that we leave as an exercise; its
length isn — 1, and we often denote the punctured cod€hyf G is a generator matrix for

C, then a generator matrix faf* is obtained fronG by deleting column (and omitting a

zero or duplicate row that may occur). What are the dimension and minimum weigt? of
Because containgg® codewords, the only way thét could contain fewer codewords is if

two codewords of agree in all but coordinate In that cas€ has minimum distanag = 1

and a codeword of weight 1 whose nonzero entry is in coordindtiee minimum distance
decreases by 1 only if a minimum weight codewordCofias a nonzeroth coordinate.
Summarizing, we have the following theorem.

Theorem 1.5.1LetC be an[n, k, d] code oveily, and letC* be the cod& punctured on
the ith coordinate.
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(i) Ifd>1,C"isan[n—1,k,d*] code where 8=d — 1if C has a minimum weight
codeword with a nonzero ith coordinate antl & d otherwise.

(i) When d=1, C* is an[n—1,k, 1] code ifC has no codeword of weigtt whose
nonzero entry is in coordinate i; otherwisék > 1,C* isan[n — 1, k — 1, d*] code
with d* > 1.

Exercise 23 Prove directly from the definition that a punctured linear code is also
linear. ¢

Example 1.5.2LetC be the [5 2, 2] binary code with generator matrix

11000
G:[00111]

Let C] andCg be the code® punctured on coordinates 1 and 5, respectively. They have
generator matrices

*—1000andG*—1100
17101 1 1 1o 0o 1 1|°

SoCjisal4 2, 1] code, whileCs is a [4 2, 2] code. |

Example 1.5.3Let D be the [4 2, 1] binary code with generator matrix

1000
G:[0111]

Let D} andD;}, be the codéD punctured on coordinates 1 and 4, respectively. They have
generator matrices

Di=[1 1 1 and Djz[l 0 0]

0o 1 1|°
SoDjisal3 1, 3] code andD; is a [3 2, 1] code. |

Notice that the cod® of Example 1.5.3 is the cod of Example 1.5.2. Obviousli$}
could have been obtained frafrdirectly by puncturing on coordinatés, 5}. In general a
codeC can be punctured on the coordinate Bty deleting components indexed by the set
T in all codewords o€. If T has size, the resulting code, which we will often denat&,
isan jp —t, k*, d*] code withk* > k — t andd* > d — t by Theorem 1.5.1 and induction.

1.5.2 Extending codes

We can create longer codes by adding a coordinate. There are many possible ways to extend
a code but the most common is to choose the extension so that the new code has only
even-like vectors (as defined in Section 1.4)Clis an |, k, d] code overFy, define the
extendeatodeC to be the code

C= {x1x2~~~xn+1e]F3+1 | X1Xz -+ Xn € C With Xy + Xp + - - 4 Xni1 = O}.
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We leave it as an exercise to show tlas linear. In factC is an h+ 1k, a] code, where
d=dord+1.LetG andH be generator and parity check matrices, respectively; for
Then a generator matri@ for C can be obtained frors by adding an extra column 16
so that the sum of the coordinates of each rowas 0. A parity check matrix foC is the
matrix

(1.3)

This construction is also referred to adding an overall parity checkrhe [8 4, 4] binary
codeHs in Example 1.3.2 obtained from the,[#, 3] Hamming codeH3 by adding an
overall parity check is called thextended Hamming code

Exercise 24 Prove directly from the definition that an extended linear code is also
linear. ¢

Exercise 25 Suppose we extend tha,[K] linear codeC over the fieldFy to the code’
where

C = XX - Xns1 e Fgt | XaXz -+ X € CWith XF + X5 + -+ + X%, = O}.
Under what conditions i€ linear? ¢

Exercise 26 Prove thaH in (1.3) is the parity check matrix for an extended cGdevhere
C has parity check matriid . ¢

If Cis an |n, k, d] binary code, then the extended cadecontains only even weight
vectors and is am[+ 1, k, d] code, wherad equalsd if d is even and equals + 1 if d is
odd. This is consistent with the results obtained by exten@lipgin the nonbinary case,
however, whether or naf is d or d + 1 is not so straightforward. For an,[k, d] code
C over[Fy, call the minimum weight of the even-like codewords, respectively the odd-like
codewords, theninimum even-like weightespectively theminimum odd-like weighof
the code. Denotthe minimum even-like weight bgl. and the minimum odd-like weight
Ey do. Sod = min{de, do}. If de < dy, thenC has minimum weighﬁ = de. If dy < de, then
d=d,+1.

Example 1.5.4 Recall that the tetracodes , from Example 1.3.3 is a [4&, 3] code over
[F3 with generator matrixéG and parity check matri¥d given by

101 1 1 -110
G_[o 11 —1} and H_[—l 10 1]

The codeword (10, 1, 1) extends to (10, 1, 1, 0) and the codeword (@, 1, —1) extends
to (0,1, 1, -1, —1). Henced = d. = dy = 3 andd = 3. The generator and parity check
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matrices forHs , are

1 11 1
A:[égi_il_ﬂandﬁz—l—lloo.
1 1010

If we extend a code and then puncture the new coordinate, we obtain the original code.
However, performing the operations in the other order will in general result in a different
code.

Example 1.5.51f we puncture the binary cod2with generator matrix

1100 1
G‘[00110}

on its last coordinate and then extend (on the right), the resulting code has generator matrix

11000
G=[00110]

|

In this example, our last step was to extend a binary code with only even weight vectors.
The extended coordinate was always 0. In general, that is precisely what happens when you
extend a code that has only even-like codewords.

Exercise 27 Do the following.
(a) LetC = Hz, bethe[42, 3]tetracode oveF; defined in Example 1.3.3 with generator
matrix

101 1
G_[o 1 1—1]‘

Give the generator matrix of the code obtained fi®ivy puncturing on the right-most
coordinate anthen extending on the right. Also determine the minimum weight of the
resulting code.

(b) LetC be a code oveF. Let C1 be the code obtained frod by puncturing on the
right-most coordinate and then extending this punctured code on the right. Prove that
C = C, ifand only if C is an even-like code.

(c) With C; defined as in (b), prove that @ is self-orthogonal and contains the all-one
codewordl, thenC = C;.

(d) With C; defined as in (b), prove th@ = C; if and only if the all-one vectod is
inC*t. ¢

Shortening codes

LetC be an f, k, d] code overFq and letT be any set of coordinates. Consider the set
C(T) of codewords which ar@on T; this set is a subcode 6f Puncturing’(T) onT gives
a code oveffy of lengthn — t called the codshortenedn T and denoted’r.
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Example 1.5.6 LetC be the [6 3, 2] binary code with generator matrix

100 11
G=(0 1 0 1 1 1.
001111

Ct is also a [63, 2] code with generator matrix
11110

Gt=|11 1 0 1 0f.
111001

Ifthe coordinates are labeled 1, 2,, 6, letT = {5, 6}. Generator matrices for the shortened
codeCt and punctured cod@' are

1 0 0 1
GTz[égig}andGT=0101.
001 1

Shortening and puncturing the dual code gives the co@e¥; (and C*)T, which have
generator matrices

(GHr=[1 1 1 1] and (Gl)Tzﬁ i i (1)]

From the generator matric&; andGT, we find that the duals afr andCT have generator
matrices

(GT)L=[3 é é 2] and GNt=[1 1 1 1.

Notice that these matrices show th@tfr = (CT)* and C)T = (Ct)*. [ |
The conclusions observed in the previous example hold in general.

Theorem 1.5.7 LetC be an[n, k, d] code oveify. Let T be a set of t coordinates. Then
() (CH)r =(CN*+and(CH" = (Cr)*, and
(i) ift <d,thenC™ and(C*)t have dimensions k and-at — k, respectively

(i) ift =d and T isthe set of coordinates where a minimum weight codeword is npnzero

thenC" and(C*)r have dimensions k 1 and n— d — k + 1, respectively.

Proof: Let c be a codeword of+ which isO on T andc* the codeword with the coordi-
nates inT removed. Sac* € (C1)r. If x € C, then 0= x - ¢ = x* - ¢*, wherex* is the
codewordx punctured orT. Thus C*)7 € (CT)*. Any vectorc € (CT)* can be extended
to a vectoiC by inserting Os in the positions @f. If x € C, puncturex on T to obtainx*.
AsO=x*-c=x-T ce (CH)r. Thus C1)r = (CT)*. ReplacingC by C* gives C1)T =
(Ct)*, completing (i).

Assumet < d. Thenn —d + 1 < n —t, implying anyn — t coordinates of’ contain
an information set by Theorem 1.4.15. Theref6fe must bek-dimensional and hence
(€Yt = (€")* has dimensiom — t — k by (i); this proves (ii).
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As in (ii), (iii) is completed if we show tha€™ has dimensiok — 1. If Sc T with S
of sized — 1, C® has dimensiotk by part (ii). ClearlyCS has minimum distance 1 ad
is obtained by puncturing® on the nonzero coordinate of a weight 1 codewordInBy
Theorem 1.5.1(iiz™ has dimensiotk — 1. O

Exercise 28 LetC be the binary repetition code of lengttas described in Example 1.2.2.
Describe ¢1)r and Ct)* foranyT. ¢

Exercise 29 LetC be the code of length 6 in Example 1.4.4. Give generator matrices for
(Yt and C1)* whenT = {1, 2} andT = {1, 3}. ¢

1.5.4 Direct sums

Fori € {1, 2} letC; be an fi, ki, d;] code, both over the same finite fily. Then their
direct sumis the ny + Ny, ky + kp, min{dy, d»}] code

C1®Cor={(c,C) | €1 € C1,00 € Ca}.
If Ci has generator matri®; and parity check matrix;, then

Gy O H O
(@] Gz O H2

are a generator matrix and parity check matrixdoe C».

G]_@Gz=|: i| and H; & H2=|: (1.4)

Exercise 30 LetC;j have generator matri§; and parity check matri; fori € {1, 2}.
Prove that the generator and parity check matrice€{f@ C, are as givenin (1.4). ¢

Exercise 31 LetC be the binary code with generator matrix

110

Or OoORr
oOr oo
=
B R RO R
o

10

Give another generator matrix far that shows that’ is a direct sum of two binary
codes. ¢

Example 1.5.8 The [6 3, 2] binary codeC of Example 1.4.4 is the direct suln@ D & D
of the [2 1, 2] codeD = {00, 11}. |

Since the minimum distance of the direct sum of two codes does not exceed the minimum
distance of either of the codes, the direct sum of two codes is generally of little use in
applications and is primarily of theoretical interest.

1.55 The (u | u 4 v) construction

Two codes of the same length can be combined to form a third code of twice the length
in a way similar to the direct sum construction. IGgtbe an h, k;, d;] code fori e {1, 2},
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both over the same finite fieldy. The @ | u + v) constructionproduces the [2, ky +
ko, min{2d,, d,}] code
C={(u,u+vVv)|uelsveCls.

If Ci has generator matri®; and parity check matrix;, then generator and parity check
matrices forC are

G, G Hy O
[O GJ and [—Hz Hz]' (1.5)

Exercise 32 Prove that generator and parity check matrices for the code obtained in the
(u | u+ v) construction from the code are as given in (1.5). ¢

Example 1.5.9 Consider the [84, 4] binary codeC with generator matrix

1 01 0|1 01
G=01010101

0 01 1{0 0 1 1{°

0 0 0 O0Of1 111

ThenC can be produced from the,[8, 2] codeC; and the [41, 4] codeC, with generator
matrices

10
Gi=(0 1

1
0 1| and G,=[1 1 1 1,
0 0 1

1

respectively, usinghe U | u + v) construction. Notic¢hat the cod€; is also constructed
using the ¢ | u + v) construction from the [2, 1] codeC3 and the [21, 2] codeC4 with
generator matrices

10
ng[o J and Gs=[1 1],

respectively. |

Unlike the direct sum construction of the previous section, thieu+ v) construction
can produce codes that are important for reasons other than theoretical. For example, the
family of Reed—Muller codes can be constructed in this manner as we see in Section 1.10.
The code in the previous example is one of these codes.

Exercise 33 Prove that they | u + v) construction usingr, ki, d;] codesC; produces a
code of dimensiok = k; + k, and minimum weightl = min{2d,, d.}. ¢

1.6

Permutation equivalent codes

In this section and the next, we ask when two codes are “essentially the same.” We term
this concept “equivalence.” Often we are interested in properties of codes, such as weight
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distribution, which remain unchanged when passing from one code to another that is es-
sentially the same. Here we focus on the simplest form of equivalence, called permutation
equivalence, and generalize this concept in the next section.

One way to view codes as “essentially the same” is to consider them “the same” if they
are isomorphic as vector spaces. However, in that case the concept of weight, which we
will see is crucial to the study and use of codes, is lost: codewords of one weight may be
sent to codewords of a different weight by the isomorphism. A theorem of MacWilliams
[212], which we will examine in Section 7.9, states that a vector space isomorphism of two
binary codes of length that preserves the weight of codewords (that is, send codewords
of one weight to codewords of the same weight) can be extended to an isomogdtiism
that is a permutation of coordinates. Cleaty permutation of coordinates that sends one
code to another preserves the weight of codewords, regardless of the field. This leads to the
following natural definition of permutation equivalent codes.

Two linear code€; andC, arepermutation equivalergrovided there is a permutation of
coordinates which sendj to C,. This permutation can be described usingeamutation
matrix, which is a square matrix with exactly one 1in each row and colangOs elsewhere.
ThusC; andC, are permutation equivalent provided there is a permutation mateuch
thatG; is a generator matrix df, if and only if G1 P is a generator matrix a@,. The effect
of applying P to a generator matrix is to rearrange the columns of the generator matrix.
If Pis a permutation sendin@; to C,, we will write C1P = C,, whereC;P ={y |y =
xP for x € C4}.

Exercise 34 Prove that ifG; andG, are generator matrices for a cadef lengthn and
P is ann x n permutation matrix, the®; P andG,P are generator matrices féP. ¢

Exercise 35 Suppose’; andC, are permutation equivalent codes whégd® = C, for
some permutation matriR. Prove that:

(@) C;P =Cy, and

(b) if C1 is self-dual, so €. ¢

Example 1.6.1LetC4, C,, andC3 be binary codes with generator matrices

11000
0110
0 0 0 01

o

Gy = , Go=

= 0 9
O O P

0
0
1

O - O

0
1
0

= O O

0/, and
0

1 1 0 0 O
G;3=(1 01 0 O
11111

= o 9

respectively. All three codes have weight distributien= As = 1 andA, = A, = 3. (See
Example 1.4.4 and Exercise 17.) The permutation switching columns 2 and 6 Gends
to Gy, showing thatC; andC, are permutation equivalent. Both andC, are self-dual,
consistent with (a) of Exercise 33; is not self-dual. Therefor@; andC3 are not permuta-
tion equivalent by part (b) of Exercise 35. |





